Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen
نویسندگان
چکیده
A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.
منابع مشابه
The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels
This paper evaluates the effects of microbiologically influenced corrosion (MIC) on fatigue-crack growth of candidate materials useful in expanding bio-ethanol usage, including a storage-tank steel (ASTM A36) and two pipeline steels (API 5L X52 and X70). The microbiological species sampled and cultivated from an ethanol fuel production stream are responsible for both acetic acid and hydrogen su...
متن کاملA Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen
Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hy...
متن کاملLiterature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels
Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملFatigue Crack Growth Rate Model for Metallic Alloys
A model has been created to allow the quantitative estimation of the fatigue crack growth rate in steels as a function of mechanical properties, test–specimen characteristics, stress–intensity range and test–frequency. With this design, the remarkable result is that the method which is based on steels, can be used without modification, and without any prior fatigue test, to estimate the crack g...
متن کامل